

APRIL 2-4, 2025



# Chest Radiograph Interpretation in Tuberculosis

Tilman Koelsch, MD



#### None

#### Goals

- Understand importance of adequate radiographic technique
- Basics of CXR interpretation
- Identify features of tuberculosis
  - Adults
  - Children
  - HIV
  - Healed/inactive
- Role of CT

# Approach to Chest Radiograph

- Technical
  - Exposure
  - Inclusion
  - Rotation
  - Inspiration

#### • Initial "Gestalt"

- Systematic Survey
  - Lungs/ribs <u>Symmetry</u>
  - Mediastinum/heart
  - Soft tissues/abdomen
- Miss/ "Hidden" areas

#### Technical Adequacy of Chest X-ray

#### Exposure



Patient positioning (not rotated, etc) Inclusion (entire lungs) Inspiration

#### Quality of this Chest X-ray?





#### • <u>Miss/"Hidden" areas</u>

- Apices
- Hila/suprahilar
- Trachea/bronchi
- Retrocardiac
- Retrodiaphragmatic





# Outline

- Lung in TB
- Mediastinum
- Putting it Together Typical and Atypical TB
  - Kids and HIV Pts.
- "Often Overlooked" Pleura and Airways
- CT

# Common LUNG X-ray Findings in Tuberculosis

- Opacity
  Lucency
  - Nodule

Cavity

Nodular pattern

Bronchiectasis

- Consolidation
- Atelectasis
- Pleural effusion

#### Nodule

#### <u>Rounded</u> opacity, well or poorly defined, measuring <u>up to 3 cm in diameter.</u>



#### Nodular Pattern





Innumerable small rounded opacities that are discrete and range in diameter from <u>2 to 10 mm</u>

#### Miliary Pattern

Profuse, discrete, rounded pulmonary opacities 2-3 mm in diameter generally uniform in size diffusely distributed throughout the lungs- sometimes lower lung predominant

Millet Seeds







# Consolidation

Homogenous increase in lung opacity

Often poorly defined and confluent



#### Atelectasis

Reduced volume of a lobe or lung, with increased opacity

Displacement of mediastinum, hila, bronchi, or fissures

Not talking about mild atelectasis

2<sup>nd</sup> Signs helpful

#### **Elevated Minor Fissure**



#### **Pleural Effusion**

Fluid in the pleural space

On erect chest radiograph, characterized by blunting of costophrenic angle and meniscus sign





## Pleural Thickening (vs Effusion)

Blunted CP angle is not curved

Thickening usually extends up the chest wall



#### Cavity

# Gas-filled space within consolidation, mass, or nodule





#### Bronchiectasis

#### Ring shadows

Train tracks





#### Adenopathy

Challenging to see on X-ray unless bulky

# Luckily TB adenitis tends to be conspicuous (AND often important clue of TB)

Hilar>Mediastinal

#### Mediastinal Adenopathy



# Hilar Adenopathy



# Hilar Adenopathy



Vs. Normal Lateral Hilum

### AP "Window"

Left lung between aortic arch and the left PA

Almost always seen

Usually concave or straight

Abnormal convexity Lymph nodes Mediastinal mass Vascular abnormality



#### AP "Window" Adenopathy



#### **Right Paratracheal Adenopathy**

#### Adenopathy vs.



#### Normal R. Paratracheal Stripe



#### Right Paratracheal Adenopathy



#### Primary vs Post-primary Tuberculosis

In adults, there is no significant difference in radiographic features between recently and remotely acquired TB.

Therefore, "post-primary" and "primary" terms inaccurate

Better to use terms "typical" and "atypical"

Rozenshtein A, et al. AJR. 2015 May 204:974-978 Geng E, et al. JAMA. 2005 Jun 8;293(22):2740-5. Jones BE, et al. AJRCCM. 1997 Oct;156(4 Pt 1):1270-3.

- Upper lobe "infiltrate"
- Upper lobe cavities

Geng E et al. JAMA. 2005 Jun 8;293(22):2740-5.

• Apical/Posterior Segments Upper Lobe - & Superior Segment Lower Lobes



• Apical/Posterior Segments Upper Lobe - & Superior Segment Lower Lobes



#### Consolidation with Cavitation


# Typical Tuberculosis



# Typical Tuberculosis



# Typical Tuberculosis - Endobronchial Spread



#### Typical Tuberculosis - Endobronchial Spread



# Atypical Tuberculosis

• "Atypical" is more common in children & HIV

- Lower or mid-lung opacity
- Lymphadenopathy <u>Only</u>

- Effusions, without cavity or upper lung opacity
  - In kids, simple effusions more common with older age, as "hypersensitivity reaction" to TB.

Geng E et al. JAMA. 2005 Jun 8;293(22):2740-5.

#### Atypical Tuberculosis- RLL cavity/hilar adenopathy



# Atypical Tuberculosis



# Atypical TB- Hilar/Mediastinal Lymphadenopathy



### Atypical Tuberculosis - Miliary Pattern



# Childhood Tuberculosis - Lymphadenopathy

| Finding                |     |     |
|------------------------|-----|-----|
| Any adenopathy         | 175 | 92% |
| Right hilar            | 83  | 43% |
| With mediastinal nodes | 43  | 23% |
| Left hilar             | 37  | 19% |
| With mediastinal nodes | 16  | 8%  |
| Bilateral hilar        | 49  | 26% |
| With mediastinal nodes | 44  | 23% |
| Mediastinal only       | 6   | 3%  |
|                        |     | (   |

Leung AN. Radiology. 1992 Jan;182(1):8 7-91.

# Parenchymal Abnormality in Childhood TB

| Finding                                    |     |     |                         |
|--------------------------------------------|-----|-----|-------------------------|
| Parenchymal abnormality with adenopathy    | 130 | 68% |                         |
| Parenchymal abnormality without adenopathy | 2   | 1%  |                         |
| Right lung consolidation                   | 78  | 41% |                         |
| Left lung consolidation                    | 21  | 11% |                         |
| Bilateral consolidation                    | 33  | 17% |                         |
| Lobar atelectasis                          | 16  | 8%  | Leung AN.<br>Radiology. |
| Effusion                                   | 11  | 6%  | 1992<br>Jan;182(1):8    |
| Normal CXR                                 | 14  | 7%  | /-91.                   |

# "Primary" Tuberculosis in Childhood: Pearls

 Parenchymal abnormality is more common in children older than 3 years

 Adolescents with recent infection usually have typical features of tuberculosis with upper lobe nodules or cavity

- Leung AN, et al. Radiology. 1992 Jan;182(1):87-91.
- Koh WJ, et al. Korean J Radiol. 2010 Nov-Dec;11(6):612-7.

## Childhood TB - Hilar/Mediast. Lymphadenopathy



### Chest Radiograph - TB and HIV

 Chest radiograph often looks like "atypical" ("primary") disease – in more advanced TB

 Adenopathy is common and highly predictive of tuberculosis

• Radiograph may be normal in up to 10% of cases

Geng E et al. JAMA. 2005 Jun 8;293(22):2740-5.

# Chest Radiograph - TB and HIV





#### Chest Radiograph - TB and HIV



### Pleural Tuberculosis

- Effusions common in adults (6-15%)
- Less common in children
- But, may be sole finding in kids
- Air fluid level may indicate bronchopleural fistula

# Pleural Effusion



# Tuberculosis - Empyema



# Tuberculosis - Empyema



# Bronchopleural Fistula

![](_page_56_Picture_1.jpeg)

## Empyema Necessitans

![](_page_57_Picture_1.jpeg)

#### **Tuberculosis and Airways**

#### Atelectasis due to

- 1) Nodal enlargement
- 2) Endobronchial abnormality
- compressing airway
- obstructing airway

May never resolve

#### Airway Narrowing due to Nodal Enlargement

![](_page_59_Picture_1.jpeg)

## Bronchostenosis

![](_page_60_Picture_1.jpeg)

#### The Chest Radiograph - Healed Tuberculosis

- Calcified granuloma <u>Ghon lesion</u>
- Calcified granuloma & hilar calcification <u>Ranke complex</u>
- Apical pleural thickening
- Fibrosis and volume loss

#### Healed Tuberculosis - Ghon Lesion

![](_page_62_Picture_1.jpeg)

Note – Calcified nodule is more dense than rib.

#### Healed Tuberculosis - Ranke Complex

![](_page_63_Picture_1.jpeg)

#### Healed Tuberculosis - Apical Fibrosis

![](_page_64_Picture_1.jpeg)

# "Activity" of Tuberculosis

 <u>Activity cannot be determined from single chest</u> <u>radiograph</u>

• Progressive disease *indicates* activity

Cavitation and bronchogenic spread suggest activity

#### Stable Tuberculosis

![](_page_66_Picture_1.jpeg)

#### Old X-rays often helpful (Want 6 months+ stability)

## Latent Tuberculosis

- ~5% will get TB in 1-2 years "Primary"
- ~5% will control TB but reactive later "Reactivation"
- ~90% will never develop symptoms "Latent"
  - Asymptomatic and "Non-Contagious"
    - Should have "Normal" CXR
    - Very small number can have subtle abnormalities
      - Pleural Thickening, Calcified Nodules, Non-Calcified Nodules, Fibrotic Scarring

Nachiappan A, et al. Radiographics. 2017 37:52-72 Uzorka JW, et al. Open Forum Infect Dis. 2019 Jul 1;6(7):ofz313

# Role of CT in Tuberculosis

- Useful in "Equivocal" Chest X-ray
  - *CT increases the specificity of a TB diagnosis*

- Higher sensitivity
- Occult miliary disease and cavities
- Necrotizing adenopathy

- Roadmap for bronchoscopist
- Presurgical

# CT in TB Adenopathy

![](_page_69_Picture_1.jpeg)

# CT in Airway TB

![](_page_70_Picture_1.jpeg)

## Summary

• Chest radiograph requires systematic approach

 Typical (Post-primary) TB: Upper lung fibrocavitary disease, "endobronchial spread" nodules

- Atypical (Primary) TB: Usually children, HIV, consolidation with adenopathy
- Serial radiographic evaluation important to determine activity


- Nachiappan A, et al. Pulmonary Tuberculosis: Role of Radiology in Diagnosis and Management. Radiographics 2017; 37:52-72.
- Jeong YJ, et al. Pulmonary Tuberculosis: Up-to-Date Imaging and Management. AJR 2008; 191:834-844
- Burrill J, et al. Tuberculosis: A Radiologic Review. Radiographics 2007;27:1255-1273.

## Thank You