

APRIL 2-4, 2025

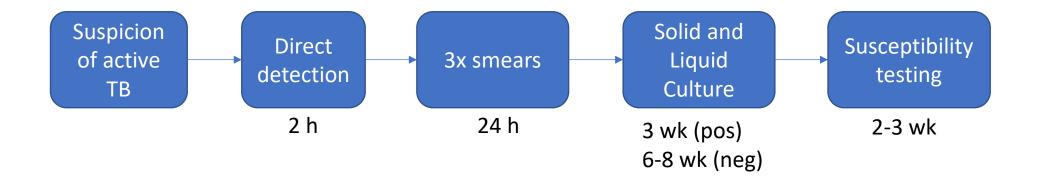
Laboratory Services TB or Not TB? That is the question.

Reeti Khare, PhD, D(ABMM) Associate Professor, Department of Medicine Director of Mycobacteriology and Microbiology Labs National Jewish Health Denver TB course April 2025

Conflicts of Interest

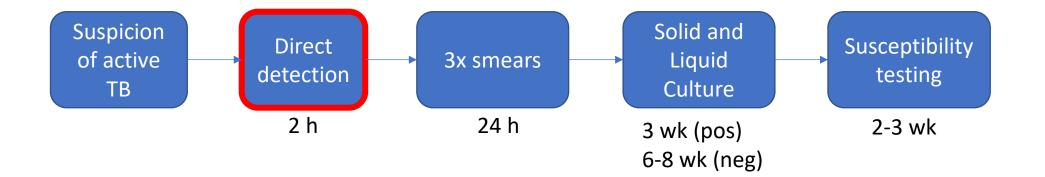
- None
- Note: I will be discussing specific commercial assays where they are endorsed by regulatory agencies (e.g. FDA or WHO) or discussed in publications but have no financial agreements.

- Understand TB testing algorithm
- Assess direct testing for TB (from specimens)
- Review culture and molecular tools for identification
- Evaluate phenotypic and gene-based susceptibilities



Importance of Diagnosis

- Of the 7 million global TB cases, only ~55-60% of them are microbiologically confirmed (others are clinically confirmed)
- Lab testing can help find the missing cases
 - Reduce delay to diagnosis
 - Detection of drug resistance and better align treatment
 - Ultimately: reduce cases, reduce deaths


Typical testing algorithm

Lewinsohn et al. Official American Thoracic Society/Infectious Diseases, Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children. Clin Infect Dis. January 15, 2017;64(2):111-115

Typical testing algorithm

Lewinsohn et al. Official American Thoracic Society/Infectious Diseases, Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children. Clin Infect Dis. January 15, 2017;64(2):111-115

- NAAT: nucleic acid amplification test
- Cepheid GeneXpert MTB/Rif
 - Real-time PCR, 2 min hands on time, ~2 h TAT.
 - MTB Detected/Not Detected
 - Report and rifampin resistance
 - MTB/Rif Ultra:
 - ~30 min faster
 - Includes additional real-time PCR targets for rifampin resistance coverage.
 - Semi-quantifies
 - LoD is ~7x lower; 5-10% more sensitive

https://www.cepheid.com/e n_US/tests/Critical-Infectious-Diseases/Xpert-MTB-RIF

https://p.widencdn.net/nvolny/Cepheid-Xpert-MTB-RIF-Ultra-Comparison-Flyer-CE-IVD-3094-English

The Cepheid GeneXpert MTB/RIF test

- A) Has close to 100% sensitivity from sputum samples (overall)
- B) Has poor specificity
- C) Can only be performed on isolates
- D) Is only FDA-approved for sputum, not any other sources

The Cepheid GeneXpert MTB/RIF test

- A) Has close to 100% sensitivity from sputum samples (overall)
- B) Has poor specificity
- C) Can only be performed on isolates

D) Is only FDA-approved for sputum, not any other sources

Source	Population	Sensitivity (%)	Specificity (%)
Sputum/ Pulmonary	Adult	85 (81 for HIV+, 67 for smear neg)	98
	Children	65 (72 for HIV+)	99

WHO consolidated guidelines on tuberculosis. Module 3: Diagnosis - Rapid diagnostics for tuberculosis detection, Jun 2020

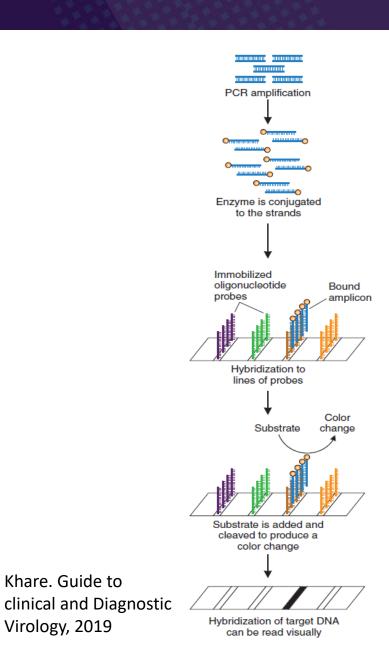
Performance Characteristics

Source	Population	Sensitivity (%)	Specificity (%)
Sputum/ Pulmonary	Adult	85 (81 for HIV+, 67 for smear neg)	98
	Children	65 (72 for HIV+)	99
Gastric aspirate	Children	73	98-99
Pleural fluid	Adults	50	99
Peritoneal fluid	Adults	59	97
Cerebrospinal fluid	Adults	70	97
Synovial fluid	Adults	97	94
Lymph node aspirate	Adults	89	86
Lymph node biopsy	Adults	82	79
Urine	Adults	85	97

WHO consolidated guidelines on tuberculosis. Module 3: Diagnosis - Rapid diagnostics for tuberculosis detection, Jun 2020

- WHO endorsed assay: Molbio Truenat: MTB and MTB Plus
 - Real-time PCR using a microchip
 - Detects M. tuberculosis
 - Followup assays can be performed sequentially for
 - Rif resistance.
 - Inh resistance
 - Multistep, ~1 hour per test
 - Portable, battery-powered

lational Jewish


Assays for Direct TB Diagnosis

- 4 groups of technologies
 - Real-time PCR
 - Line probe assays
 - LAMP
 - Antigen detection
 - Targeted next generation sequencing

Line Probe Assays (LPAs)

- Step 1: PCR
- Step 2: Amplicons are bound onto a membrane containing capture probes for identification and drug resistance genes
- Step 3: Pattern of binding is read

Khare, Guide to

Virology, 2019

Line Probe Assays (LPAs)

Conjugate Control	
M. tuberculosis complex	
O	
rpoB Locus Control rpoB wild type probe 1	
rpoB wild type probe 1 rpoB wild type probe 2	
rpoB wild type probe 2 rpoB wild type probe 3	
rpoB wild type probe 3	
rpoB wild type probe 5	
rpoB wild type probe 6	
rpoB wild type probe 7	
rpoB wild type probe 8	
rpoB mutation probe 1	
rpoB mutation probe 2A	
rpoB mutation probe 2B	
rpoB mutation probe 3	
katG Locus Control	
katG wild type probe	
katG mutation probe 1	
katG mutation probe 2	
inhA Locus Control	
inhA wild type probe 1	
inhA wild type probe 2	
inhA mutation probe 1	
inhA mutation probe 2	
inhA mutation probe 3A	
inhA mutation probe 3B	
coloured marker	
Resistance	R+I

https://www.hainlifescience.de/en/products/microbiology/mycobacteria /tuberculosis/genotype-mtbdrplus.html

Assays for Direct TB Diagnosis

• 4 groups of technologies

- Real-time PCR
- Line probe assays
- LAMP
- Antigen detection
- Targeted next generation sequencing

- Loop-mediated isothermal amplification (e.g. Loopamp)
- Complex
- Isothermal:
 - No thermocycler needed.
 - Less energy intensive: can be battery powered, or even in a water-bath.

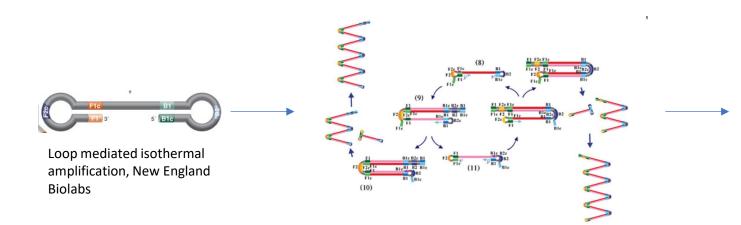
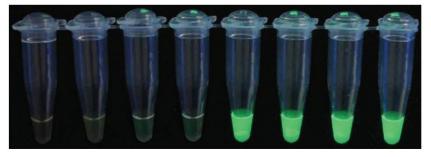



Figure 2. Visual display of TB-LAMP results under ultraviolet light

The use of loop-mediated isothermal amplification (TB-LAMP) for the diagnosis of pulmonary tuberculosis. Policy Guidance, WHO. 2016.

Diagnosis of pulmonary TB in adults

Test	Version	Sensitivity (%)	Specificity (%)	Detection of rifampin resistance
Cepheid GeneXpert	MTB/RIF	85 (81 for HIV+)	97-98	Y
	MTB/RIF Ultra	90	96	Υ
Molbio Truenat	МТВ	73-83	98-99	Ν
	MTB Plus	80-89	96-98	Ν
	MTB-Rif	-	-	Y (93% sens; 96% spec)
TB-LAMP		74-78 (64 for HIV+)	98-99	Ν

Rowlinson, Musser and Khare, Mycobacterium tuberculosis Complex, in Manual of Clinical Microbiology, 2023

- WHO consolidated guidelines on tuberculosis. Module 3: Diagnosis - Rapid diagnostics for tuberculosis detection, Jun 2020

- WHO Operational Handbook on Tuberculosis, Module 3. Diagnosis - Rapid diagnostics for tuberculosis detection, Jun 2020.

- Rapid Communication: Molecular assays as initial tests for the diagnosis of tuberculosis and rifampicin resistance. 2020 Jan, World Health Organization.

- The use of loop-mediated isothermal amplification (TB-LAMP) for the diagnosis of pulmonary tuberculosis. Policy Guidance, World Health Organization. 2016.

A NAAT should be used at the end of treatment to assess whether the patient has been cured of TB

A. True

B. False

A NAAT should be used at the end of treatment to assess whether the patient has been cured of TB

A. True

B. False

Assays for Direct TB Diagnosis

• 4 groups of technologies

- Real-time PCR
- Line probe assays
- LAMP
- Antigen detection
- Targeted next generation sequencing

Antigen Testing

- Mycobacterial glycolipid called lipoarabinomannan (LAM)
- Excreted in urine
- Abbott-Alere Determine TB LAM Ag Lateral Flow Assay
 - 25 min
 - Generally poor sensitivity and specificity (~42%)
 - Slightly better performance in select populations (TB-HIV co-infections, ~77%)
 - TB dissemination and renal involvement of infection may be the mechanism

https://www.globalpointofcare .abbott/ww/en/productdetails/determine-tb-lam.html

Assays for Direct TB Diagnosis

• 4 groups of technologies

- Real-time PCR
- Line probe assays
- LAMP
- Antigen detection
- Targeted next generation sequencing

Targeted Next Generation Sequencing

- Next generation sequencing (NGS)
- Whole genome sequencing
- Targeted NGS

Targeted Next Generation Sequencing

- Next generation sequencing (NGS) massively parallel sequencing. It is a technique.
- Whole genome sequencing applies NGS techniques to sequence all of an organism's genome
- Targeted NGS applies NGS techniques to sequence some of an organism's genome.

MTBC Culture	MTBC Identification by GeneLEAD (Diagenode, Belgium)		MTBC Identification by Deeplex (Genoscreen, France)		Bonnet et a Comprehe
	Positive	Negative	Positive	Negative	GeneLEAI Combined
Positive	58	0	46	12	TB [®] Assay Drug Resis
Negative	5	49	0	54	Antituberc Transmiss
Sensitivity	100		79		of Mycoba tuberculos
Specificity	98		100		From Clini Cell Infect

Bonnet et al. A Comprehensive Evaluation of GeneLEAD VIII DNA Platform Combined to Deeplex Myc-TB[®] Assay to Detect in 8 Days Drug Resistance to 13 Antituberculous Drugs and Transmission of *Mycobacterium tuberculosis* Complex Directly From Clinical Samples. Front Cell Infect Microbiol. 2021

Assays for Direct TB Diagnosis

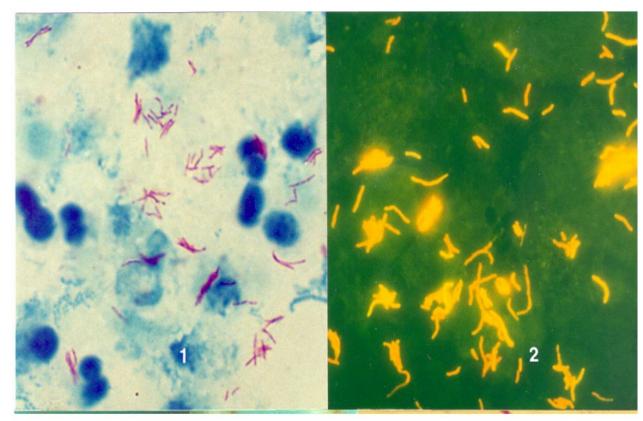
• 4 groups of technologies

- Real-time PCR
- Line probe assays
- LAMP
- Antigen detection
- Targeted NGS

African Giant Pouched Rat

https://www.nationalgeographic.org/article/giantrats-trained-sniff-out-tuberculosis-africa/

https://onlinelibrary.wiley.com/doi/10.1111/joim.1 3281


Biewer et al. Diagnostic accuracy of an exhaled breath test for TB in hospitalized patients with cough or risk, International Union Against Tuberculosis and Lung Disease, 2024

AFB Smears

AFB Smears

Light microscopy (Ziehl-Neelsen staining)

Fluorescence microscopy (Auramine-O staining)

Weyer. Prevalence Survey Preparatory Workshop, WHO Stop TB Department. Part III: Bacteriological Examination. https://www.who.int/tb/advisory_bodies/impact_measurement_taskforce/meetings/prevalence_survey/psws_laboratory_examination_weir.pdf

Fluorescent AFB smears should be

A) Performed due to their high sensitivity and specificityB) Performed to provide an estimate of bio-burdenC) Discontinued due to their low sensitivity and specificityD) Discontinued because they capture NTM as well as TB

Fluorescent AFB smears should be

- A) Performed due to their high sensitivity and specificity
- B) Performed to provide an estimate of bio-burden
- C) Discontinued due to their low sensitivity and specificity
- D) Discontinued because they capture NTM as well as TB

- Ziehl Neelsen: sensitivity = 20-70%; need ~10⁴-10⁵ CFU/ml
- Auramine-rhodamine smears: ~5-10% more sensitive

Somoskovi et al. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925666/#R2</u> Cattamanchi et al. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754584/</u> Singh, Parija. <u>https://www.ncbi.nlm.nih.gov/pubmed/10772577</u> Azadi et al. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5897959/</u> Ghiasi et al. <u>https://link.springer.com/article/10.1007/s40475-015-0043-1</u>

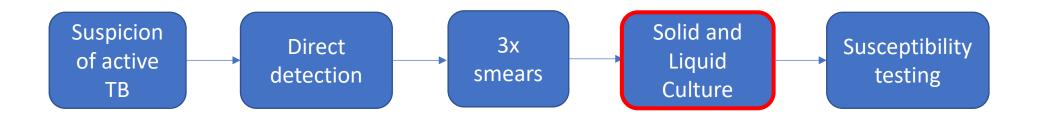
Benefits/Limitations of AFB smears

- Disadvantage: low sensitivity
 - "TB programmes should transition to replacing microscopy as the initial diagnostic test with molecular [WHO-endorsed rapid diagnostics] that allow for the detection of MTBC."
- Advantages:
 - Turnaround time: 24 hours
 - Can detect NTM
 - Are semiquantitative

Culture

Culture still needs to be performed if a NAAT is positive

- A. True
- B. False


Culture still needs to be performed if a NAAT is positive

A. True

B. False

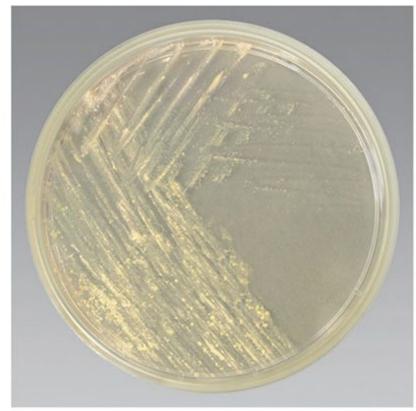
Culture

- Limitations
 - Slow TAT
 - highly trained personnel
- Advantages
 - High specificity
 - Can identify false positives and false negatives from molecular testing
 - Can identify NTM
 - Isolate needed for drug susceptibility testing

- Location of disease (Pulmonary specimens are the most common)
- Time of collection (Early morning sputum samples better than random specimens)
- Ease of collection
 - Pediatric patients: gastric lavage
 - Biohazards (e.g. risk of aerosolization with sputum collection)
 - Swabs are not acceptable

Study	Random specimen positive (%)	Early morning (%)	specimen positive	Caulfield, Wenge tuberculosis dise molecular techn Journal of Clinica
Abraham et al. [10] (smear positivity)	21/49 (43)	32/49 (65)		Mycobacterial D Pages 33-43
Ssengooba et al. [11] (MGIT culture positivity)	12/21 (57)	21/21 (100)		-

Caulfield, Wengenack. Diagnosis of active uberculosis disease: From microscopy to nolecular techniques ournal of Clinical Tuberculosis and Other Aycobacterial Diseases, Volume 4, August 2016, Pages 33-43


Culture Techniques

- Specimen processing
 - Digestion: N-acetyl-I-Cysteine (NALC)
 - Decontamination: 2% NaOH
 - Concentration: centrifugation
- Liquid media
 - 10-15% more sensitive than solid cultures.
 - TAT: ~10 days for a positive
- Solid media
 - TAT: 20-25 days for a positive
 - Lowenstein Jensen agar
 - contains egg and malachite green
 - Middlebrook agar
 - Contains casein hydrolysate (for MDR TB)
- Pyruvate needed instead of glycerol for growth of M. bovis
- "Rough and buff" colonies
- Cultures go for 6-8 weeks

https://www.fisher sci.ca/shop/product s/lowensteinjensen-mediumlj/p-4523753

Middlebrook 7H11

https://www.fishersci.ca/shop/products/remel-middlebrook-7h11agar/r01605

Isolate Confirmation

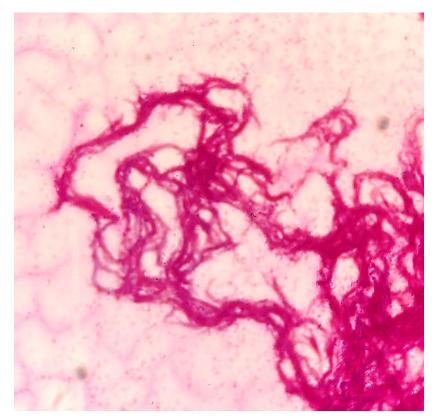


Photo: Valerie Rodriguez

Methods of identification

• MALDI-TOF mass spectrometry

- Advantages: fast, low cost of operation, instrumentation may already be in the lab, good coverage of many mycobacteria.
- Limitations: Does not differentiate some mycobacterial complexes; does not subspeciate; does not detect drug resistance markers

Line Probe Assays

Specimen	Assay name	Identification of MTB	Resistance markers	Company
Sputum only	GenoType CMdirect Ver 1.0	Yes (also ID's ~20 NTM)	No	Hain
	Genoscholar NTM+MDRTB II (Previously called NTM+MDRTB Detection Kit 2)	Yes (also identifies 3 other NTM)	Yes (rpoB. inhA. katG)	Nipro
	GenoType MTBDRplus 2.0	Yes	Voc (rpoB inhA katC)	Hain
	Genotype MTBDRsl ver	ies	Yes (rpoB, inhA, katG)	Hain
	1.0 (e)	Yes	Yes (rrs, gyrA, embB)	Hain
Sputum or culture	Genotype MTBDRsl ver 2.0 (e)	Yes	Yes (rrs, gyrA, gyrB, eis)	Hain
	INNO-LiPA Mycobacteria v2	Yes (also ID's 16 NTM)	Yes (Rif)	Fujirebio
	GenoType Mycobacterium CM Ver			
	2.0	Yes (also ID's ~20 NTM)	No	Hain
		Yes (also differentiates the		
Culture only	GenoType MTBC Ver 1.X	MTBC)	No	Hain

TB Complex Species

Complex members	Generally Adapted to (not exclusive)
M. tuberculosis	Humans
M. bovis	Domestic and wild bovine animals, humans
M. bovis BCG	Culture, immunocompromised humans
M. africanum	Humans – limited to Africa
M. canetti	Humans – rare
M. caprae	Goats
M. orygis	Various
M. microti	Small rodents
M. pinnipedii	Seals/walruses
M. suricattae	African mammals (Meerkats)
M. mungi	African mammals (Banded mongooses)
Dassie bacillus	African mammals (Rock hyraxes)

Clarke et al. Animal-adapted members of the Mycobacterium tuberculosis complex endemic to the southern African subregion, J S Afr Vet Assoc. 201

TB Complex Species

Complex members	Generally Adapted to (not exclusive)	
M. tuberculosis ~95%	Humans	
M. bovis ~2%	Domestic and wild bovine animals, humans	Pyr R, tracing
M. bovis BCG ~1%	Culture, immunocompromised humans	(animals or
M. africanum ~2%	Humans – limited to Africa	iatrogenic)
M. canetti	Humans – rare	
M. caprae	Goats	
M. orygis	Various	
M. microti	Small rodents	
M. pinnipedii	Seals/walruses	
M. suricattae	African mammals (Meerkats)	
M. mungi	African mammals (Banded mongooses)	
Dassie bacillus	African mammals (Rock hyraxes)	
	_	

Clarke et al. Animal-adapted members of the Mycobacterium tuberculosis complex endemic to the southern African subregion, J S Afr Vet Assoc. 201

Other Confirmatory Tests

- Microscopy
- MALDI-TOF MS
- NAATs (e.g. Line probe assays)
- Sequencing
 - Sanger
 - 16S, 23S ribosomal genes
 - hsp65 heat shock protein
 - rpoB RNA polymerase
 - Targeted NGS
 - Whole genome sequencing

Antimicrobial Susceptibility Testing

Lewinsohn et al. Official American Thoracic Society/Infectious Diseases, Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children. Clin Infect Dis. January 15, 2017;64(2):111-115

Term	Abbreviation	Resistance
Rifampin resistant TB	RR-TB	Rif
Multidrug resistant TB	MDR-TB	Rif and Inh
Pre-extensively drug- resistant TB	Pre-XDR TB	Rif (with or without Inh) and a FQ
Extensively drug- resistant TB	XDR TB	Pre-XDR And at least one "Group A drug" (levofloxacin, moxifloxacin, bedaquiline, linezolid)

https://www.who.int/news/item/27-01-2021-who-announces-updated-definitions-of-extensively-drug-resistant-tuberculosis

Antimicrobial Susceptibility Testing

- Gene-based testing from specimen or isolate
- Phenotypic testing from an isolate

Global tuberculosis report 2019. WHO

Gene-based AST

- Pros:
 - Faster! (hours-days instead of 6-8 weeks of culture based AST)
 - Some well characterized mutations that correlate well with phenotypic AST
 - Recommended by the WHO in some cases

Relevant genotypic ASTs for TB

Use	Drug	Genes containing mutations associated with drug resistance
1st	Rifampin	rpoB
line	Isoniazid	inhA, katG, ahpC
	pyrazinamide	pncA
	Ethambutol	embB
2 nd	Streptomycin	rrs, gidB, rpsL
line	Amikacin	rrs
	Capreomycin	rrs, tlyA
	Kanamycin	rrs, eis
	Fluoroquinolones	gyrA, gyrB
	Linezolid	rrl, rplC
	Bedaquiline	Rv0678, atpE, pepQ
	Clofazimine	Rv0678
	Pretomanid	fgd1, fbiA, fbiB, and fbiC

Genotypic detection of rifampin resistance:

- A. Is not available in most labs
- B. May represent a false positive
- C. Occurs using the *rif* gene
- D. Should be ignored

Genotypic detection of rifampin resistance:

A. Is not available in most labs

B. May represent a false positive

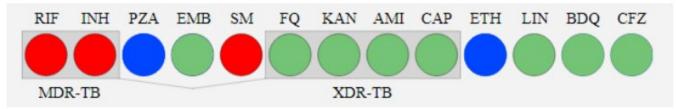
- C. Occurs using the *rif* gene
- D. Should be ignored

Gene-based AST

- Real-time PCR
 - Cepheid: MTB/Rif and MTB/Rif Ultra
 - Truenat: First MTB, then Rifampin
 - Cepheid: MTB/XDR: Inh and second line drugs

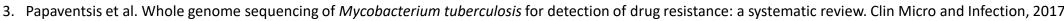
	•	
X	National Jewish	
X	Health®	

Drug Resistance	Gene Target		
	inhA promoter		
	katG		
isoniazid	fabG1		
	oxyR- ahpC intergenic region		
ethionamide	inhA promoter		
	gyrA		
luoroquinolones	gyrB		
amikacin, kanamycin,	rrs		
capreomycin	eis promoter		


https://cepheid.widen.net/s/cwc24p8lcl

• Line probe assays

Specimen	Assay name	Drugs	Resistance markers	Company
	Genoscholar NTM+MDRTB II (Previously called NTM+MDRTB Detection Kit 2)	Rifampin AND isoniazid	Yes (rpoB, inhA, katG)	Nipro
	GenoType MTBDRplus 2.0	Rifampin AND isoniazid Aminoglycosides,	Yes (rpoB, inhA, katG)	Hain
	Genotype MTBDRsl ver 1.0 (e)	fluoroquinolones ethambutol	Yes (rrs, gyrA, embB)	Hain
Sputum or culture	Genotype MTBDRsl ver 2.0 (e)	Fluoroquinolones, second line injectables	Yes (rrs, gyrA, gyrB, eis)	Hain
Culture only	INNO-LiPA Mycobacteria v2	Rifampin	Yes (Rif)	Fujirebio



- Whole genome sequencing
 - Lab developed tests (NY)
- Targeted sequencing of resistance genes
 - Lab developed tests (CA, FL, IN, MO)
 - AmPORE TB (Oxford Nanopore, UK), TBSeq (ShengTing, CH) and Deeplex Myc-TB (GenoScreen, FR)

https://www.genoscreen.fr/images/genoscreen-services/deeplex/technical_note_20200706_CE.pdf

- 1. Tuberculosis Laboratory Aggregate Report, 5th ed. 2019. <u>https://www.cdc.gov/tb/publications/reportsarticles/2019-Aggregate_Report.pdf</u>
- 2. Lee and Pai. Real-Time Sequencing of Mycobacterium tuberculosis: Are We There Yet? JCM, 2017

Gene-based AST

• Cons

- Requires specialty assays (None are readily available in the US except Xpert MTB/RIF; some labs develop LDTs)
- False positives: e.g. low prevalence or detection of silent mutations
- False negative: mutations causing resistance that are outside of the regions detected by the assay (e.g. false negative bedaquiline on Deeplex because of lack of atpE coverage), interpretation based on differences in strains, novel mutations
- Sensitivity compared to phenotypic results ranges from 61% to 97%

Jouet et al. Deep amplicon sequencing for culture-free prediction of susceptibility or resistance to 13 anti-tuberculous drugs, Eur Resp J, 2021 Campbell et al. Molecular detection of mutations associated with first-and second-line drug resistance compared with conventional drug susceptibility testing of *Mycobacterium tuberculosis*. Antimicrob Agents Chemother, 2011

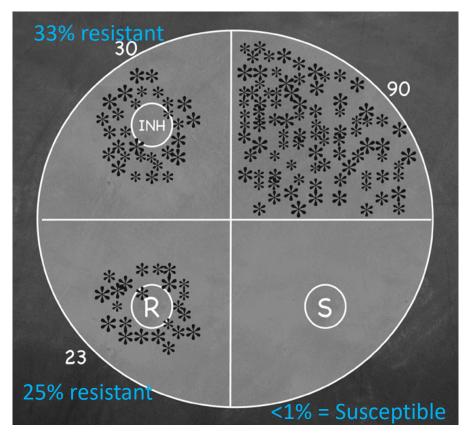
Antimicrobial Susceptibility Testing

- Gene-based testing from specimen or an isolate
- Phenotypic testing from an isolate
 - Advantages:
 - resistance detected even if outside common targeted genes
 - New mutations or genomic regions associated with resistance don't need to be known to detect resistance
 - More resolution for higher level and lower level resistance

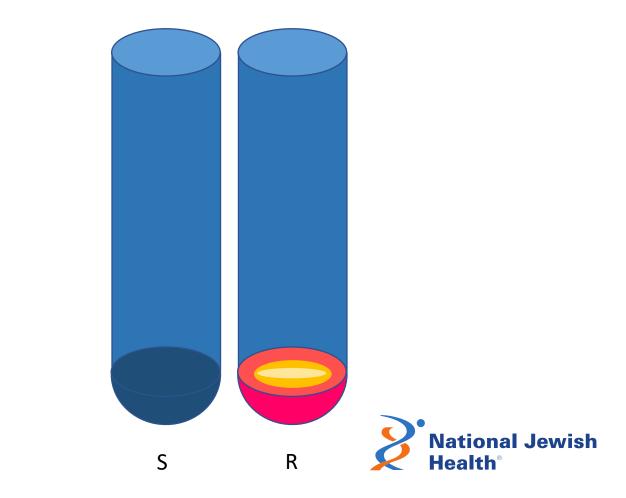
Global tuberculosis report 2019. WHO

Proportion Method

- No single isolate, No MIC
- Looks at populations of isolates in a patient
- Clinical response unlikely if >1% resistance seen at a defined "critical" concentration


	Liquid s	systems	Agar pi	coportion		
Antimicrobial agent ^f	MGIT 960	VersaTrek	7H10	7H11		
First-line agents						
RIF ^b	1	1	1	1		
INH ^c	0.1	0.1	0.2	0.2		
PZA	100	300	NR^d	NR^{d}		
EMB	5	5	5	7.5		
Second-line agents						
INH-high ^e	0.4	0.4	1	1		
Amikacin	1		4			
Capreomycin	2.5		10	10		
Ethionamide	5		5	10		
Kanamycin	2.5		5	6		
Levofloxacin	1.5		1			
Moxifloxacin	0.25		0.5	0.5		
PAS	4		2	8		
Rifabutin	0.5		0.5	0.5		
Streptomycin ^e	1,4		2	2		

Woods et al. Susceptibilty Test Methods: Mycobacteria, *Nocardia* and Other Actinomycetes. Chapter 78, Manual of Clinical Microbiology 12th edition.


Proportion Method

Agar proportion

Barry and Lin. Drug Resistant TB. A survival Guide for Clinicians, 3rd ed. https://www.currytbcenter.ucsf.edu/sites/default/files/tb_sg3_chap3_ laboratory.pdf

MGIT broth proportion

Change to Rifampin Critical Concentrations

	Medium and concentration(s) $(\mu g/ml)^a$				
	Liquid s	systems	Agar proportion		
Antimicrobial agent ^f	MGIT 960	VersaTrek	7H10	7H11	
First-line agents					
RIF^b	0.5	-	-1-	1	
INH ^c	0.1	0.1	0.2	0.2	
PZA	100	300	NR^d	NR^d	
EMB	5	5	5	7.5	
Second-line agents					
INH-high ^e	0.4	0.4	1	1	
Amikacin	1		4		
Capreomycin	2.5		10	10	
Ethionamide	5		5	10	
Kanamycin	2.5		5	6	
Levofloxacin	1.5		1		
Moxifloxacin	0.25		0.5	0.5	
PAS	4		2	8	
Rifabutin	0.5		0.5	0.5	
Streptomycin ^e	1, 4		2	2	

1 = 1 = 1 = 1 = 11. 1.

New

M24S

Performance Standards for Susceptibility

Testing of Mycobacteria, Nocardia spp., and

Other Aerobic Actinomycetes

WHO, Technical Report on critical concentrations for drug susceptibility testing of isoniazid and the rifamycins (rifampicin, rifabutin and rifapentine), 2021

What about the new drugs?

- Bedaquiline, pretomanid, linezolid, moxifloxacin
 - Bedaquiline resistance emerges quickly
- Diagnostic testing lags behind clinical use; difficult to find, limited to CDC, public health labs, or even sometimes, in the case of pretomanid, its still research use only.
- Curry Center has collated a document of places that can do testing:

https://www.currytbcenter.ucsf.edu/sites/default/files/2022-12/Full_Reference_Lab_table_12-20-22.xlsx.

https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023/featured-topics/new-treatment-tb Saluzzo and Cirillo. Mind the gap. Rolling out new drug resistant tuberculosis regimens with limited diagnostic tools. J Clin Tuberc Other Mycobact Dis. 2023 Feb

- Many direct TB identification tools; becoming preferred as the initial test for TB
- Culture and molecular tools for identification becoming faster
- Phenotypic and gene-based susceptibilities more available

Thank you for joining today's session!

